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NONLOCAL EFFECT IN LIQUID CRYSTALS

Jinhae Park*

Abstract. In this paper, we investigate the role of nonlocal inter-
action energy on nucleations of periodic solutions in a one-dimensional
problem arising in smectic liquid crystals.

1. Introduction

In this article, we analyze the structure of ferroelectric liquid crystals
with long-range interactions of polarizations. We assume that the liquid
crystals are of smectic type, possess spontaneous polarization.

The vast majority of the nematogens are polar compounds but the
absence of nematic ferroelectric behavior indicates that there is equal
probability of the dipoles pointing in either direction. Because of this
it is generally assumed that the permanent dipolar contribution to the
orientational order is small enough to be negligible. However, it has been
known that the interaction between neighboring dipoles is significant
compared with dispersion forces. It is possible to construct a model
that accounts for permanent dipoles but it is still consistent with the
non-polar character of the medium. When dealing with such type of
interactions, the concept of near-neighbors becomes relevant. We start
with the spin-1/2 Ising model with interaction Hamiltonian

H = −J
∑

<ij>

sisj −H
∑

i

si, si = ±1,
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where < ij > denotes the chosen interactive neighborhood. We propose
a continuum version with free energy

W (p) =
∫

Ω

∫

Ω
J(x− y)(p(x)− p(y))2 dx dy,

where Ω is a domain in R3. The field p is an order parameter cor-
responding to the dipole moment (either electric or geometric). The
antiferro-ordering (i.e., the tendency of immediate neighbors to be of
opposite polarization) corresponds to taking J < 0, and the case with
J > 0 gives the ferro-ordering.

In the studies of ferromagnetic materials, R. C. Rogers [9] proposed
this type of nonlocal exchange energy. Mathematical advantage of using
such a nonlocal energy is to model the highly oscillatory domain struc-
tures which are observed in ferromagnetic materials. In [1], the authors
studied a discrete model for Ising-like phase transitions and introduced

∑

r,r′∈Γ

J (r − r′)(p(r)− p(r′))2 +
∑

r∈Γ

W (u(r)),

where Γ is a lattice whose sites are occupied by blocks, and W has
minima at u = ±1. The corresponding continuum energy term becomes

∫

Ω

∫

Ω
J(x− y)(p(x)− p(y))2 dx dy +

∫

Ω
W (p(x)) dx

which is derived in [1]. This can also be written as

−2
∫

Ω

∫

Ω
J(x− y)p(x)p(y) dx dy +

∫

Ω
W̃ (p(x)) dx

for some function W̃ . In smectic C* liquid crystals, Cladis et al [3]
adopted this type of a term in the total energy in order to study an
effective internal field model for the antiferroelectric to field induced
ferroelectric transition in smectics. The energy can be considered as
interaction between smectic layers.

Throughout this paper, we consider a simplified energy functional for
smectic liquid crystals [8]

E =
∫

Ω
{K|∇n|2 +

1
η2

∣∣∣k× n|P− |P|k× n|
∣∣∣
2

+µ2|∇P|2 +
1
4ε

(|P|2 − 1)2 +KγP ·P} dx,(1.1)

where Ki > 0(i = 1, 2, 3), µ2 > 0, k = (0, 0, 1), ε > 0, η 6= 0, and Kγ is a
kernel operator defined by
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KγP(x) =
∫

Ω
K(x,y)P(y) dy.

The choice of a kernel function K depends on material structures. In
ferro and antiferroelectric liquid crystals, polarization vector tends to be
±P0 between smectic layers, where |P0| = 1. In this paper, we take K
to be a fundamental solution of −∆ + δ. Since we are interested in the
role of nonlocal energy term in the structure, we further assume that

∇ω = k, P = P(z), n = (a1 cosΦ(z), a1 sinΦ(z), b1),

P = p(z)
k× n
|k× n| , a2

1 + b2
1 = 1, a1 > 0, b1 > 0,

where p(z) is a scalar function and Φ(z) = π
2 or 3π

2 .
Then the energy functional (1.1) reads

E =
∫ ∞

−∞
{1
2
µ2p2

z +
1
4ε

(p2 − 1)2} dz

+
∫ ∞

−∞

∫ ∞

−∞
K(z, w)p(z)p(w) dw dz,

where K = −δG and G is a fundamental solution of ηq′′ = −p + q,
q′(±∞) = 0.

The corresponding Euler-Lagrange equations are{
µ2p′′ = −4

εp + δq + 4
εp3,

ηq′′ = −p + q.
(1.2)

2. Nucleations of periodic solutions

In this section, we study the role of the nonlocal energy to model
one dimensional periodic configurations of polarization. We prove that
existence of periodic solutions which nucleate from p = 0.

Setting p′ = u, q′ = v, η = γ2, (1.2) becomes



p
q
u
v




′

=




0 0 1 0
0 0 0 1
−4
µ2ε

δ
µ2 0 0

− 1
γ2

1
γ2 0 0







p
q
u
v


 +




0
0

4
µ2ε

p3

0


 .(2.1)

Let a = − 4
µ2ε

, b = δ
µ2 , c = 1

γ2 . Then the characteristic equation,
det(A− λI) = 0 becomes

λ4 − (a + c)λ2 + c(a + b) = 0
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where A is the 4× 4 matrix appearing in (2.1). Then

λ2 =
a + c±

√
(a + c)2 − 4c(a + b)

2
.

There are several types of eigenvalues of A. In case that a + b = 0, A
has double zero eigenvalue. By the theory of center manifold, we can
reduce the dimension of the problem. We refer the reader to [2, 7] for
more study. In our study, we are interested in the case that A has pairs
of purely imaginary eigenvalues. From now on, we assume that µ, ε, γ,
and δ satisfy

a + c < 0 < (a + b)(2.2)

so that (a + c)2 − 4c(a + b) > 0.

2.1. Case I: ε is not small.

Without loss of generality, we may assume that

− 4
µ2ε

+
1
γ2

= −3, − 4
µ2ε

+
δ

µ2
= 2γ2.

so that eigenvalues of A are ±i,±√2i. In fact, other cases can be treated
in a similar fashion. Let

P =




1 0 1 0
−a+1

b 0 −a+2
b 0

0 1 0
√

2
0 −α1(a+1)

b 0 −
√

2(a+2)
b


 .

Use changes of variables (x, y, z, w) → P−1(x, y, z, w)T and let z1 =
y + xi, z2 = y − xi,z3 = w + zi z4 = w − zi to obtain



z1

z2

z3

z4




′

=




−i 0 0 0
0 i 0 0
0 0 −√2i 0
0 0 0

√
2i







z1

z2

z3

z4


 + l(z1, z2, z3, z4)




−(a + 2)
−(a + 2)

a+1√
2

a+1√
2




where l(z1, z2, z3, z4) = a(z1+z2+z3+z4)3

8 .
Then the basis for Ker(L3

A) [2] is

{z2
1z2e1, z1z3z4e1, z1z

2
2e2, z2z3z4e2, z

2
3z4e3, z1z2z3e3, z3z

2
4e4, z1z2z3e4}.

We also know that a miniversal deformation of the diagonal matrix with
entries ±i,±√2i is
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


λ1 − i 0 0 0
0 λ̄1 + i 0 0
0 0 λ2 −

√
2i 0

0 0 0 λ̄2 +
√

2i




for some λ1, λ2 ∈ C.
Therefore we obtain the following

{
ż1 = (λ1 + i)z1 − a(a+2)

8 (3|z1|2z1 + 6|z3|2z1),
ż3 = (λ2 +

√
2i)z3 + a(a+1)

8
√

2
(6|z1|2z3 + 3|z3|2z3).

(2.3)

The equations for z2, z4 are obtained by taking conjugates of equations
for z1, z3 respectively.

Let z1 = r1e
iθ1 , z3 = r2e

iθ2 . Then (2.3) becomes
{

ṙ1 = ε1r1 − a(a+2)
8 r1(3r2

1 + 6r2
2),

ṙ2 = ε2r1 + +a(a+1)

8
√

2
r2(6r2

1 + 3r2
2),

where εi, i = 1, 2 are real parameters and equations for θi, i = 1, 2 are
determined by r1, r2.

Let η1 = 3a(a+2)
8 and η2 = 3a(a+1)

8
√

2
. Then

{
ṙ1 = ε1r1 − η1r1(r2

1 + 2r2
2),

ṙ2 = ε2r2 + η2r2(2r2
1 + r2

2).
(2.4)

We assume that ηi 6= 0, i = 1, 2. Take α, β satisfying

α + 1
β

=
2η2

η1
,

α

β + 1
=

η2

2η1
.

By scalings as in [2]

r2
1

|η1| → r1,
r2
1

2|η1| → r2,−sgnη1

2
t → t,

the system (2.4) takes the form
{

ṙ1 = r1(µ1 + σr1 − r2),
ṙ2 = r2(µ2 − α+1

β r1 + α
β+1r2),

where µi, i = 1, 2 are real parameters, σ = 1 if η1η2 > 0 and σ = −1 if
η1η2 < 0. By the change of variables

µ1 = ξδ, µ2 = −ξ
α

β
δ − γδ2, r1 → δr1, r2 → δr2, dt → rα−1

1 rβ−1
2

δ
dt,
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we obtain a new system of equations
{

ṙ1 = rα
1 rβ−1

2 (ξ + σr1 − r2),
ṙ2 = rα−1

1 rβ
2

(
− ξ α

β − α+1
β σr1 + α

β+1r2

)
.

(2.5)

Notice that the system (2.5) is a Hamiltonian system with a first integral

(2.6) H(r1, r2) = rα
1 rβ

2

(ξ + σr1

β
− r2

β + 1

)
.

We have the following theorem [2]

Theorem 2.1. Let

r∗1 =
β(β + 1)σ
α + β + 1

(
α

β + 1
µ1 + µ2),

r∗2 =
β(β + 1)σ
α + β + 1

(
α + 1

β
µ1 + µ2),

and h∗1 = H(r∗1, r
∗
2). Consider the following three cases

(1) σ = −1, ξ = 1, α > 0, β > 0,
(2) σ = 1, ξ = 1, −1 < α + β < 0,
(3) σ = 1, ξ = −1, α + β < −1.

Then for any h either in (0, h∗) for case (1) and (3) or (h∗, 0) for case
(2), the level curve {(r1, r2) : H(r1, r2) = h} is a closed curve.

If 0 < 4
η2ε

< 1, then we can take α = −2, β = 1
7 . This corresponds

to the case (3) in the previous theorem (2.1).

Corollary 2.2. Suppose that

− 4
µ2ε

+
1
γ2

= −3, − 4
µ2ε

+
δ

µ2
= 2γ2, 0 <

4
η2ε

< 1.

Then level curves {(r1, r2) : H(r1, r2) = h}of the first integral H for
(2.5) are closed for small h.

We notice that this method does not give us information about closed
integral curves when ε is small. We discuss this case in the following.

2.2. Case II: ε is small.

Let
δ

µ2
= δ̃, εµ2 = ε̃, γ =

1
η
.(2.7)

After dropping the tilde, we get
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{
p′′ = −4

εp + δq + 4
εp3,

q′′ = −γp + γq
(2.8)

Let q̃ = − q
λ . Then,

{
p′′ = 4

ε (p3 − p) + δλ0q̃,
q̃′′ = − γ

λ0
p + γq̃.

Choose λ0 so that λ2
0 = −γ

δ . Again, dropping the tilde symbol, we have

{
p′′ = 4

ε (p3 − p) + δλ0q,
q′′ = δλ0p + γq.

(2.9)

For convenience, we introduce notations:

p = (p1, p2)T , q = (q1, q2)T ,

p1 = p, p2 = q, q1 = p′1, q2 = p′2.

In terms of the new notation, the system (2.9) becomes
{ dp

dx = q,
dq
dx = (4

ε (p3
1 − p1) + δλp2, δλp1 + γp2)T .

(2.10)

Let

H(p,q) =
1
2
|q|2 − γ

2
p2
2 − δλ0p1p2 − 1

ε
(p2

1 − 1)2.

We rewrite (2.10) as

dU

dx
= J∇UH(U),(2.11)

where U = (p,q)T and J =
(

O I
−I O

)
. We calculate

A0 := J∇UH(0) =




0 0 1 0
0 0 0 1
−4

ε δλ0 0 0
δλ0 γ 0 0


 ,

and

det(A0 − λI) = λ4 − (γ − 4
ε
)λ2 − δ2λ2

0 −
4γ

ε
= 0.

With physically realistic assumptions on the parameters of the prob-
lem, we obtain the theorem.
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Theorem 2.3. Assume that γ < 0 and δε < 1. Then there exist a
σ > 0 and a continuously differentiable surface {(U(r, κ), s(r, κ)) : r ∈
(−σ, σ), κ ∈ (κ0−σ, κ0 +σ)} of nontrivial (real), 2π

κ −periodic solutions
of (2.11) through (U(0, κ), s(0, κ)) = (0, s(0, κ)), with s(0, κ0) = 0 in
C1

2π
κ

(R,R4) ×R. Furthermore, U(−r, s) is obtained from U(r, s) by a

phase shift of half the period π
κ .

Proof. Denote

γ1 =
6
ε
−

√
20
ε2
− δ2λ2

0,

γ2 =
6
ε

+

√
20
ε2
− δ2λ2

0,

s =
(
γ − 4

ε

)2
+ 4(

4γ

ε
+ δ2λ2

0).

We take s as the bifurcation parameter of the problem. If γ2 > γ > γ1,
then s < 0 and A0 has fully complex eigenvalues, i.e., neither the real
nor the imaginary parts is zero. If γ < γ1, then s > 0 and A0 has two
pairs of purely imaginary eigenvalues. In the case that γ = γ1, s = 0,
A0 has double purely imaginary eigenvalues ±iκ0, where

κ0 =

√∣∣∣2
ε
−

√
20
ε2
− δ2λ2

0

∣∣∣.

Equation (2.11) can be written as

dU

dx
= J∇UH(U, s).

Let φ0 be an eigenvector of A0 corresponding to iκ0. It has the form

φ0 =
(
1,

1
δ2λ0

(
4
ε
− κ2

0), iκ0,
iκ0

δ2λ0
(
4
ε
− κ2

0)
)T

.

We now calculate,

d

ds

∣∣∣
s=0
∇2

UH(0, s) =




0 0 0 0
0 −γ′(0) 0 0
0 0 0 0
0 0 0 0


 .

Hence,

<
d

ds

∣∣∣
s=0
∇2

UH(0, s)φ0, φ̄0 >= −γ′(0)
δ2λ2

(4
ε
− κ2

0

)2
6= 0,
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since
γ′(0) =

1
2γ1 + 8

ε

6= 0.

By the Hamiltonian Hopf bifurcation theorem [6] (p. 61), we complete
the proof.
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